Assignment 1.

1. Solve the following inequalities .
(a) $|4 x-1| \geq|x+2|$
(b) $|3 x+2|<x+1$
2. Solve the equation $x^{2}-|x-2|=8$.
3. The polynomial $2 x^{3}+5 x^{2}+a x+b$, where a and b are constants, is denoted by $p(x)$. It is given that $x+2$ is a factor of $p(x)$, and that when $p(x)$ is divided by $x-1$ the remainder is 8 .
(a) Find the values of a and b.
(b) When a and b have these values, find the remainder when $p(x)$ is divided by $(x-1)(x+2)$.
4. It is given that $x^{2}+3 x+7$ is a factor of the polynomial $p(x)=x^{4}+k x+14$, where k is a constant.
(a) Find the value of k and factorize $p(x)$ completely.
(b) Hence solve the inequality $p(x) \geq 0$.
5. (\dagger) Sketch the region in the $x-y$ plane that satisfies the inequality: $|x-1|-|y+2| \leq 3$.

Total mark of this assignment: $30+5$.
The symbol $(\boldsymbol{\dagger})$ indicates a bonus question. Finish other questions before working on this one.

